登录  
 加关注
查看详情
   显示下一条  |  关闭
温馨提示!由于新浪微博认证机制调整,您的新浪微博帐号绑定已过期,请重新绑定!立即重新绑定新浪微博》  |  关闭

静心阁--漳平附小六(6)班

.

 
 
 

日志

 
 
关于我

小学数学高级教师,本科学历,市骨干教师。长期担任班主任工作,所带班级班风 、学风优良, 1次被评为省少先队先锋中队,3次被评为市先进班集体、市少先队红旗中队, 4次被评为市“优秀少先队辅导员”、市“优秀班主任”等荣誉。长期担任小学高年级数学教学工作,有丰富的高年级数学教学经验,十多篇教育教学论文在国家级、省级、市级发表或得奖, 教育教学效果好,任教学科成绩优异, 3次被市委、市府评为“ 教书育人先进个人 ”。个人教育格言:勤勤恳恳教书,踏踏实实育人。

第5讲 找规律(一)  

2010-01-28 16:21:13|  分类: 三年级数学广角 |  标签: |举报 |字号 订阅

  下载LOFTER 我的照片书  |

2009年5月5日 - ぶ順⑦釨繎ぶ - ぶ順⑦釨繎ぶ第5讲 找规律(一)

  这一讲我们先介绍什么是“数列”,然后讲如何发现和寻找“数列”的规律。

  按一定次序排列的一列数就叫数列。例如,

(1) 1,2,3,4,5,6,…

(2) 1,2,4,8,16,32;

(3) 1,0,0,1,0,0,1,…

(4) 1,1,2,3,5,8,13。

  一个数列中从左至右的第n个数,称为这个数列的第n项。如,数列(1)的第3项是3,数列(2)的第3项是4。一般地,我们将数列的第n项记作an

  数列中的数可以是有限多个,如数列(2)(4),也可以是无限多个,如数列(1)(3)

  许多数列中的数是按一定规律排列的,我们这一讲就是讲如何发现这些规律。

  数列(1)是按照自然数从小到大的次序排列的,也叫做自然数数列,其规律是:后项=前项+1,或第n项an=n。

  数列(2)的规律是:后项=前项×2,或第n项

  数列(3)的规律是:“1,0,0”周而复始地出现。

  数列(4)的规律是:从第三项起,每项等于它前面两项的和,即

  a3=1+1=2,a4=1+2=3,a5=2+3=5,

  a6=3+5=8,a7=5+8=13。

  常见的较简单的数列规律有这样几类:

  第一类是数列各项只与它的项数有关,或只与它的前一项有关。例如数列(1)(2)

  第二类是前后几项为一组,以组为单元找关系才可找到规律。例如数列(3)(4)

  第三类是数列本身要与其他数列对比才能发现其规律。这类情形稍为复杂些,我们用后面的例3、例4来作一些说明。

例1 找出下列各数列的规律,并按其规律在( )内填上合适的数:

(1)4,7,10,13,( ),…

(2)84,72,60,( ),( );

(3)2,6,18,( ),( ),…

(4)625,125,25,( ),( );

(5)1,4,9,16,( ),…

(6)2,6,12,20,( ),( ),…

解:通过对已知的几个数的前后两项的观察、分析,可发现

(1)的规律是:前项+3=后项。所以应填16。

(2)的规律是:前项-12=后项。所以应填48,36。

(3)的规律是:前项×3=后项。所以应填54,162。

(4)的规律是:前项÷5=后项。所以应填5,1。

(5)的规律是:数列各项依次为

  1=1×1, 4=2×2, 9=3×3, 16=4×4,

  所以应填5×5=25。

(6)的规律是:数列各项依次为

  2=1×2,6=2×3,12=3×4,20=4×5,

  所以,应填 5×6=30, 6×7=42。

  说明:本例中各数列的每一项都只与它的项数有关,因此an可以用n来表示。各数列的第n项分别可以表示为

(1)an=3n+1;(2)an=96-12n;

(3)an=2×3n-1(4)an=55-n(5)an=n2(6)an=n(n+1)。

  这样表示的好处在于,如果求第100项等于几,那么不用一项一项地计算,直接就可以算出来,比如数列(1)的第100项等于3×100+1=301。本例中,数列(2)(4)只有5项,当然没有必要计算大于5的项数了。

例2 找出下列各数列的规律,并按其规律在( )内填上合适的数:

(1)1,2,2,3,3,4,( ),( );

(2)( ),( ),10,5,12,6,14,7;

(3) 3,7,10,17,27,( );

(4) 1,2,2,4,8,32,( )。

解:通过对各数列已知的几个数的观察分析可得其规律。

(1)把数列每两项分为一组,1,22,33,4,不难发现其规律是:前一组每个数加1得到后一组数,所以应填4,5。

(2)把后面已知的六个数分成三组:10,512,614,7,每组中两数的商都是2,且由5,6,7的次序知,应填8,4。

(3)这个数列的规律是:前面两项的和等于后面一项,故应填( 17+27=)44。

(4)这个数列的规律是:前面两项的乘积等于后面一项,故应填(8×32=)256。

例3 找出下列各数列的规律,并按其规律在( )内填上合适的数:

(1)18,20,24,30,( );

(2)11,12,14,18,26,( );

(3)2,5,11,23,47,( ),( )。

解:(1)因20-18=2,24-20=4,30-24=6,说明(后项-前项)组成一新数列2,4,6,…其规律是“依次加2”,因为6后面是8,所以,a5-a4=a5-30=8,故

  a5=8+30=38。

(2)12-11=1,14-12=2, 18-14=4, 26-18=8,组成一新数列1,2,4,8,…按此规律,8后面为16。因此,a6-a5=a6-26=16,故a6=16+26=42。

(3)观察数列前、后项的关系,后项=前项×2+1,所以

  a6=2a5+1=2×47+1=95,

  a7=2a6+1=2×95+1=191。

例4 找出下列各数列的规律,并按其规律在( )内填上合适的数:

(1)12,15,17,30, 22,45,( ),( );

(2) 2,8,5,6,8,4,( ),( )。

解:(1)数列的第1,3,5,…项组成一个新数列12,17, 22,…其规律是“依次加5”,22后面的项就是27;数列的第2,4,6,…项组成一个新数列15,30,45,…其规律是“依次加15”,45后面的项就是60。故应填27,60。

(2)(1)分析,由奇数项组成的新数列2,5,8,…中,8后面的数应为11;由偶数项组成的新数列8,6,4,… 中,4后面的数应为2。故应填11,2。

  

 练习5

  

  按其规律在下列各数列的( )内填数。

  1.56,49,42,35,( )。

  2.11, 15, 19, 23,( ),…

  3.3,6,12,24,( )。

  4.2,3,5,9,17,( ),…

  5.1,3,4,7,11,( )。

  6.1,3,7,13,21,( )。

  7.3,5,3,10,3,15,( ),( )。

  8.8,3,9,4,10,5,( ),( )。

  9.2,5,10,17,26,( )。

  10.15,21,18,19,21,17,( ),( )。

  11.数列1,3,5,7,11,13,15,17。

(1)如果其中缺少一个数,那么这个数是几?应补在何处?

(2)如果其中多了一个数,那么这个数是几?为什么?

谢谢 - ぶ順⑦釨繎ぶ - ぶ順⑦釨繎ぶ

谢谢 - ぶ順⑦釨繎ぶ - ぶ順⑦釨繎ぶ

谢谢 - ぶ順⑦釨繎ぶ - ぶ順⑦釨繎ぶ

  评论这张
 
阅读(696)| 评论(0)

历史上的今天

在LOFTER的更多文章

评论

<#--最新日志,群博日志--> <#--推荐日志--> <#--引用记录--> <#--博主推荐--> <#--随机阅读--> <#--首页推荐--> <#--历史上的今天--> <#--被推荐日志--> <#--上一篇,下一篇--> <#-- 热度 --> <#-- 网易新闻广告 --> <#--右边模块结构--> <#--评论模块结构--> <#--引用模块结构--> <#--博主发起的投票-->
 
 
 
 
 
 
 
 
 
 
 
 
 
 

页脚

网易公司版权所有 ©1997-2018