登录  
 加关注
查看详情
   显示下一条  |  关闭
温馨提示!由于新浪微博认证机制调整,您的新浪微博帐号绑定已过期,请重新绑定!立即重新绑定新浪微博》  |  关闭

静心阁--漳平附小六(6)班

.

 
 
 

日志

 
 
关于我

小学数学高级教师,本科学历,市骨干教师。长期担任班主任工作,所带班级班风 、学风优良, 1次被评为省少先队先锋中队,3次被评为市先进班集体、市少先队红旗中队, 4次被评为市“优秀少先队辅导员”、市“优秀班主任”等荣誉。长期担任小学高年级数学教学工作,有丰富的高年级数学教学经验,十多篇教育教学论文在国家级、省级、市级发表或得奖, 教育教学效果好,任教学科成绩优异, 3次被市委、市府评为“ 教书育人先进个人 ”。个人教育格言:勤勤恳恳教书,踏踏实实育人。

第27讲 巧用矩形面积公式  

2010-01-28 14:10:12|  分类: 三年级数学广角 |  标签: |举报 |字号 订阅

  下载LOFTER 我的照片书  |

2009年5月5日 - ぶ順⑦釨繎ぶ - ぶ順⑦釨繎ぶ第27讲 巧用矩形面积公式

  同学们都知道求正方形和长方形面积的公式:

  正方形的面积=a×a(a为边长),

  长方形的面积=a×b(a为长,b为宽)。

第27讲 巧用矩形面积公式 - ぶ順⑦釨繎ぶ - ぶ順⑦釨繎ぶ

  利用这两个公式可以计算出各种各样的直角多边形的面积。例如,对左下图,我们无法直接求出它的面积,但是通过将它分割成几块,其中每一块都是正方形或长方形(见右下图),分别计算出各块面积再求和,就得出整个图形的面积。

第27讲 巧用矩形面积公式 - ぶ順⑦釨繎ぶ - ぶ順⑦釨繎ぶ

例1 右图中的每个数字分别表示所对应的线段的长度(单位:米)。这个图形的面积等于多少平方米?

 第27讲 巧用矩形面积公式 - ぶ順⑦釨繎ぶ - ぶ順⑦釨繎ぶ

分析与解:将此图形分割成长方形有下面两种较简单的方法,图形都被分割成三个长方形。根据这两种不同的分割方法,都可以计算出图形的的面积。

第27讲 巧用矩形面积公式 - ぶ順⑦釨繎ぶ - ぶ順⑦釨繎ぶ

  5×2+(5+3)×3+(5+3+4)×2=58(米2);

  或

  5×(2+3+2)+3×(2+3)+4×2=58(米2)。

  上面的方法是通过将图形分割成若干个长方形,然后求图形面积的。实际上,我们也可以将图形“添补”成一个大长方形(见下图),然后利用大长方形与两个小长方形的面积之差,求出图形的面积。

第27讲 巧用矩形面积公式 - ぶ順⑦釨繎ぶ - ぶ順⑦釨繎ぶ

  (5+3+4)×(2+3+2)-2×3-(2+3)×4=58(米2);

  或

  (5+3+4)×(2+3+2)-2×(3+4)-3×4=58(米2)。

  由例1看出,计算直角多边形面积,主要是利用“分割”和“添补”的方法,将图形演变为多个长方形的和或差,然后计算出图形的面积。其中“分割”是最基本、最常用的方法。

例2 右图为一个长50米、宽25米的标准游泳池。它的四周铺设了宽2米的白瓷地砖(阴影部分)。求游泳池面积和地砖面积。

第27讲 巧用矩形面积公式 - ぶ順⑦釨繎ぶ - ぶ順⑦釨繎ぶ

分析与解:游泳池面积=50×25=1250(米2)。

  求地砖面积时,我们可以将阴影部分分成四个长方形(见下图),从而可得白瓷地砖的面积为

  (2+25+2)×2×2+50×2×2=316(米2);

  或

  (2+50+2)×2×2+25×2×2=316(米2)。

第27讲 巧用矩形面积公式 - ぶ順⑦釨繎ぶ - ぶ順⑦釨繎ぶ

  求地砖的面积,我们还可以通过“挖”的方法,即从大长方形内“挖掉”一个小长方形(见右图)。从而可得白瓷地砖面积为

第27讲 巧用矩形面积公式 - ぶ順⑦釨繎ぶ - ぶ順⑦釨繎ぶ

  (50+2+2)×(25+2+2)-50×25

  =316(米2)。

例3 下图中有三个封闭图形,每个封闭图形均由边长为1厘米的小正方形组成。试求各图形的面积。

 第27讲 巧用矩形面积公式 - ぶ順⑦釨繎ぶ - ぶ順⑦釨繎ぶ

解:每个小方格的面积为1厘米2

  图(1)可分成四个凸出块和一个中间块,这五块的面积都是2×2=4(厘米2)。图(1)的面积为

  4×5=20(厘米2)。

  图(2)可以看成是从长7厘米、宽6厘米的长方形中,“挖掉”4个边长为2厘米的正方形。它的面积等于

  7×6-(2×2)×4=26(厘米2)。

  图(3)像个宝鼎,竖行分割,从左至右分成五块,每块面积依次为2,5,3,5,2厘米2,总面积为

  2+5+3+5+2=17(厘米2)。

例3中分割成正方形、长方形的方法很多,因而具体计算面积的方法也很多。由于图形内所含方格数不多,所以也可以通过数图中小方格的数目来求得面积。

例4 一个长方形的周长是22厘米。如果它的长和宽都是整数厘米,那么这个长方形的面积(单位:厘米2)有多少种可能值?最大、最小各是多少?

解:因为长方形的周长是22厘米,所以它的长、宽之和是22÷2=11(厘米)。考虑到长、宽都是整数厘米,只有如下情形:

  所以,这个长方形的面积有五种可能值:10,18,24,28,30厘米2。最大是30厘米2,最小是10厘米2

 

 

练习27

  1.甲、乙两块地都是长方形,且一样长。

  (1)如果甲地面积是乙地面积的2倍,那么甲地的宽是乙地的宽的多少倍?

  (2)如果甲地的宽是乙地的宽的3倍,那么甲地面积是乙地面积的多少倍?

  2.求下列各图的面积。(单位:厘米)

 第27讲 巧用矩形面积公式 - ぶ順⑦釨繎ぶ - ぶ順⑦釨繎ぶ

  3.把边长为40米的正方形运动场扩为长60米、宽50米的长方形运动场。此运动场面积扩大了多少?周长增加了多少?

  4.一个正方形的面积是144米2。如果它被分成六个相同的长方形(如左下图),那么,其中一个长方形的面积和周长各是多少?

第27讲 巧用矩形面积公式 - ぶ順⑦釨繎ぶ - ぶ順⑦釨繎ぶ

  5.右上图是用30根长4厘米的小棍摆成的图形。这个图形的面积是多少?用这些小棍摆成的面积最大的直角多边形比这个图形的面积大多少?

  6.左下图的面积是52厘米2,其中每个小方格都是一个正方形。这个图形的外沿的周长是多少?

第27讲 巧用矩形面积公式 - ぶ順⑦釨繎ぶ - ぶ順⑦釨繎ぶ

  7.右上图由11个同样的正方形组成。如果这个图形的周长是96厘米,那么它的面积是多少?

第27讲 巧用矩形面积公式 - ぶ順⑦釨繎ぶ - ぶ順⑦釨繎ぶ

谢谢 - ぶ順⑦釨繎ぶ - ぶ順⑦釨繎ぶ

谢谢 - ぶ順⑦釨繎ぶ - ぶ順⑦釨繎ぶ

谢谢 - ぶ順⑦釨繎ぶ - ぶ順⑦釨繎ぶ

  评论这张
 
阅读(695)| 评论(1)

历史上的今天

在LOFTER的更多文章

评论

<#--最新日志,群博日志--> <#--推荐日志--> <#--引用记录--> <#--博主推荐--> <#--随机阅读--> <#--首页推荐--> <#--历史上的今天--> <#--被推荐日志--> <#--上一篇,下一篇--> <#-- 热度 --> <#-- 网易新闻广告 --> <#--右边模块结构--> <#--评论模块结构--> <#--引用模块结构--> <#--博主发起的投票-->
 
 
 
 
 
 
 
 
 
 
 
 
 
 

页脚

网易公司版权所有 ©1997-2018