登录  
 加关注
查看详情
   显示下一条  |  关闭
温馨提示!由于新浪微博认证机制调整,您的新浪微博帐号绑定已过期,请重新绑定!立即重新绑定新浪微博》  |  关闭

静心阁--漳平附小六(6)班

.

 
 
 

日志

 
 
关于我

小学数学高级教师,本科学历,市骨干教师。长期担任班主任工作,所带班级班风 、学风优良, 1次被评为省少先队先锋中队,3次被评为市先进班集体、市少先队红旗中队, 4次被评为市“优秀少先队辅导员”、市“优秀班主任”等荣誉。长期担任小学高年级数学教学工作,有丰富的高年级数学教学经验,十多篇教育教学论文在国家级、省级、市级发表或得奖, 教育教学效果好,任教学科成绩优异, 3次被市委、市府评为“ 教书育人先进个人 ”。个人教育格言:勤勤恳恳教书,踏踏实实育人。

第9讲 数字谜(一)  

2010-01-27 08:28:08|  分类: 四年级数学广角 |  标签: |举报 |字号 订阅

  下载LOFTER 我的照片书  |

2009年5月5日 - ぶ順⑦釨繎ぶ - ぶ順⑦釨繎ぶ9讲 数字谜(一)

  我们在三年级已经学习过一些简单的数字谜问题。这两讲除了复习巩固学过的知识外,还要学习一些新的内容。

1 在下面算式等号左边合适的地方添上括号,使等式成立:

  5+7×8+12÷4-2=20。

  分析:等式右边是20,而等式左边算式中的7×8所得的积比20大得多。因此必须设法使这个积缩小一定的倍数,化大为小。

  从整个算式来看,7×8是4的倍数,12也是4的倍数,5不能被4整除,因此可在7×8+12前后添上小括号,再除以4得17,5+17-2=20。

:5+(7×8+12)÷4-2=20。

2 把1~9这九个数字填到下面的九个□里,组成三个等式(每个数字只能填一次):

 第9讲 数字谜(一) - ぶ順⑦釨繎ぶ - ぶ順⑦釨繎ぶ

分析与解:如果从加法与减法两个算式入手,那么会出现许多种情形。如果从乘法算式入手,那么只有下面两种可能:

  2×3=6或2×4=8,

  所以应当从乘法算式入手。

  因为在加法算式□+□=□中,等号两边的数相等,所以加法算式中的三个□内的三个数的和是偶数;而减法算式□-□=可以变形为加法算式□=□+□,所以减法算式中的三个□内的三个数的和也是偶数。于是可知,原题加减法算式中的六个数的和应该是偶数。

  若乘法算式是2×4=8,则剩下的六个数1,3,5,6,7,9的和是奇数,不合题意;

  若乘法算式是2×3=6,则剩下的六个数1,4,5,7,8,9可分为两组:

  4+5=9,8-7=1(或8-1=7);

  1+7=8,9-5=4(或9-4=5)。

  所以答案为

   第9讲 数字谜(一) - ぶ順⑦釨繎ぶ - ぶ順⑦釨繎ぶ

3 下面的算式是由1~9九个数字组成的,其中“7”已填好,请将其余各数填入□,使得等式成立:

  □□□÷□□=□-□=□-7。

分析与解:因为左端除法式子的商必大于等于2,所以右端被减数只能填9,由此知左端被除数的百位数只能填1,故中间减式有8-6,6-4,5-3和4-2四种可能。经逐一验证,8-6,6-4和4-2均无解,只有当中间减式为5-3时有如下两组解:

  128÷64=5-3=9-7,

  或 164÷82=5-3=9-7。

4 将1~9九个数字分别填入下面四个算式的九个□中,使得四个等式都成立:

  □+□=6, □×□=8,

  □-□=6, □□÷□=8。

分析与解:因为每个□中要填不同的数字,对于加式只有两种填法:1+5或2+4;对于乘式也只有两种填法:1×8或2×4。加式与乘式的数字不能相同,搭配后只有两种可能:

  (1)加式为1+5,乘式为2×4;

  (2)加式为2+4,乘式为1×8。

  对于(1),还剩3,6,7,8,9五个数字未填,减式只能是9-3,此时除式无法满足;

  对于(2),还剩3,5,6,7,9五个数字未填,减式只能是9-3,此时除式可填56÷7。答案如下:

  2+4=6, 1×8=8,

  9-3=6, 56÷7=8。

  例2~例4都是对题目经过初步分析后,将满足题目条件的所有可能情况全部列举出来,再逐一试算,决定取舍。这种方法叫做枚举法,也叫穷举法列举法,它适用于只有几种可能情况的题目,如果可能的情况很多,那么就不宜用枚举法。

5 从1~9这九个自然数中选出八个填入下式的八个○内,使得算式的结果尽可能大:

  [○÷○×(○+○)]-[○×○+○-○]。

分析与解:为使算式的结果尽可能大,应当使前一个中括号内的结果尽量大,后一个中括号内的结果尽量小。为叙述方便,将原式改写为:

  [A÷B×(C+D)]-[E×F+G-H]。

  通过分析,A,C,D,H应尽可能大,且A应最大,C,D次之,H再次之;B,E,F,G应尽可能小,且B应最小,E,F次之,G再次之。于是得到A=9,C=8,D=7,H=6,B=1,E=2,F=3,G=4,其中C与D,E与F的值可互换。将它们代入算式,得到

  [9÷1×(8+7)]-[2×3+4-6]=131。

  

 练习9

  1.在下面的算式里填上括号,使等式成立:

  (1)4×6+24÷6-5=15;

  (2)4×6+24÷6-5=35;

  (3)4×6+24÷6-5=48;

  (4)4×6+24÷6-5=0。

  2.加上适当的运算符号和括号,使下式成立:

  1 2 3 4 5 =100。

  3.把0~9这十个数字填到下面的□里,组成三个等式(每个数字只能填一次):

  □+□=□,

  □-□=□,

  □×□=□□。

  4.在下面的□里填上+,-,×,÷,()等符号,使各个等式成立:

  4□4□4□4=1,

  4□4□4□4=3,

  4□4□4□4=5,

  4□4□4□4=9。

  5.将2~7这六个数字分别填入下式的□中,使得等式成立:

  □+□-□=□×□÷□。

  6.将1~9分别填入下式的九个□内,使算式取得最大值:

  □□□×□□□×□□□。

  7.将1~8分别填入下式的八个□内,使算式取得最小值:

  □□×□□×□□×□□。 第9讲 数字谜(一) - ぶ順⑦釨繎ぶ - ぶ順⑦釨繎ぶ

谢谢 - ぶ順⑦釨繎ぶ - ぶ順⑦釨繎ぶ

谢谢 - ぶ順⑦釨繎ぶ - ぶ順⑦釨繎ぶ

谢谢 - ぶ順⑦釨繎ぶ - ぶ順⑦釨繎ぶ

  评论这张
 
阅读(819)| 评论(0)

历史上的今天

在LOFTER的更多文章

评论

<#--最新日志,群博日志--> <#--推荐日志--> <#--引用记录--> <#--博主推荐--> <#--随机阅读--> <#--首页推荐--> <#--历史上的今天--> <#--被推荐日志--> <#--上一篇,下一篇--> <#-- 热度 --> <#-- 网易新闻广告 --> <#--右边模块结构--> <#--评论模块结构--> <#--引用模块结构--> <#--博主发起的投票-->
 
 
 
 
 
 
 
 
 
 
 
 
 
 

页脚

网易公司版权所有 ©1997-2018