登录  
 加关注
查看详情
   显示下一条  |  关闭
温馨提示!由于新浪微博认证机制调整,您的新浪微博帐号绑定已过期,请重新绑定!立即重新绑定新浪微博》  |  关闭

静心阁--漳平附小六(6)班

.

 
 
 

日志

 
 
关于我

小学数学高级教师,本科学历,市骨干教师。长期担任班主任工作,所带班级班风 、学风优良, 1次被评为省少先队先锋中队,3次被评为市先进班集体、市少先队红旗中队, 4次被评为市“优秀少先队辅导员”、市“优秀班主任”等荣誉。长期担任小学高年级数学教学工作,有丰富的高年级数学教学经验,十多篇教育教学论文在国家级、省级、市级发表或得奖, 教育教学效果好,任教学科成绩优异, 3次被市委、市府评为“ 教书育人先进个人 ”。个人教育格言:勤勤恳恳教书,踏踏实实育人。

第3讲 高斯求和  

2010-01-27 08:16:29|  分类: 四年级数学广角 |  标签: |举报 |字号 订阅

  下载LOFTER 我的照片书  |

2009年5月5日 - ぶ順⑦釨繎ぶ - ぶ順⑦釨繎ぶ3讲 高斯求和

  德国著名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算:

  1+2+3+4+…+99+100=?

  老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。高斯为什么算得又快又准呢?原来小高斯通过细心观察发现:

  1+100=2+99=3+98=…=49+52=50+51。

  1~100正好可以分成这样的50对数,每对数的和都相等。于是,小高斯把这道题巧算为

  (1+100)×100÷2=5050。

  小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。

  若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。例如:

  (1)1,2,3,4,5,…,100;

  (2)1,3,5,7,9,…,99;

  (3)8,15,22,29,36,…,71。

  其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末项为71,公差为7的等差数列。

  由高斯的巧算方法,得到等差数列的求和公式

=(首项+末项)×项数÷2

1 1+2+3+…+1999=?

分析与解:这串加数1,2,3,…,1999是等差数列,首项是1,末项是1999,共有1999个数。由等差数列求和公式可得

  原式=(1+1999)×1999÷2=1999000。

  注意:利用等差数列求和公式之前,一定要判断题目中的各个加数是否构成等差数列。

2 11+12+13+…+31=?

分析与解:这串加数11,12,13,…,31是等差数列,首项是11,末项是31,共有31-11+1=21(项)。

  原式=(11+31)×21÷2=441。

  在利用等差数列求和公式时,有时项数并不是一目了然的,这时就需要先求出项数。根据首项、末项、公差的关系,可以得到

项数=(末项-首项)÷公差+1

末项=首项+公差×(项数-1)

3 3+7+11+…+99=?

分析与解:3,7,11,…,99是公差为4的等差数列,

  项数=(99-3)÷4+1=25,

  原式=(3+99)×25÷2=1275。

4 求首项是25,公差是3的等差数列的前40项的和。

:末项=25+3×(40-1)=142,

  和=(25+142)×40÷2=3340。

  利用等差数列求和公式及求项数和末项的公式,可以解决各种与等差数列求和有关的问题。

5 在下图中,每个最小的等边三角形的面积是12厘米2,边长是1根火柴棍。问:(1)最大三角形的面积是多少平方厘米?(2)整个图形由多少根火柴棍摆成?

 第3讲 高斯求和 - ぶ順⑦釨繎ぶ - ぶ順⑦釨繎ぶ

  分析:最大三角形共有8层,从上往下摆时,每层的小三角形数目及所用火柴数目如下表:

 第3讲 高斯求和 - ぶ順⑦釨繎ぶ - ぶ順⑦釨繎ぶ

  由上表看出,各层的小三角形数成等差数列,各层的火柴数也成等差数列。

:(1)最大三角形面积为

  (1+3+5+…+15)×12

  =[(1+15)×8÷2]×12

  =768(厘米2)。

  (2)火柴棍的数目为

  3+6+9+…+24

  =(3+24)×8÷2=108(根)。

  答:最大三角形的面积是768厘米2,整个图形由108根火柴摆成。

6 盒子里放有三只乒乓球,一位魔术师第一次从盒子里拿出一只球,将它变成3只球后放回盒子里;第二次又从盒子里拿出二只球,将每只球各变成3只球后放回盒子里……第十次从盒子里拿出十只球,将每只球各变成3只球后放回到盒子里。这时盒子里共有多少只乒乓球?

分析与解:一只球变成3只球,实际上多了2只球。第一次多了2只球,第二次多了2×2只球……第十次多了2×10只球。因此拿了十次后,多了

  2×1+2×2+…+2×10

  =2×(1+2+…+10)

  =2×55=110(只)。

  加上原有的3只球,盒子里共有球110+3=113(只)。

  综合列式为:

  (3-1)×(1+2+…+10)+3

  =2×[(1+10)×10÷2]+3=113(只)。

 

 练习3

  1.计算下列各题:

  (1)2+4+6+…+200;

  (2)17+19+21+…+39;

  (3)5+8+11+14+…+50;

  (4)3+10+17+24+…+101。

  2.求首项是5,末项是93,公差是4的等差数列的和。

  3.求首项是13,公差是5的等差数列的前30项的和。

  4.时钟在每个整点敲打,敲打的次数等于该钟点数,每半点钟也敲一下。问:时钟一昼夜敲打多少次?

  5.求100以内除以3余2的所有数的和。

  6.在所有的两位数中,十位数比个位数大的数共有多少个? 第3讲 高斯求和 - ぶ順⑦釨繎ぶ - ぶ順⑦釨繎ぶ

谢谢 - ぶ順⑦釨繎ぶ - ぶ順⑦釨繎ぶ

谢谢 - ぶ順⑦釨繎ぶ - ぶ順⑦釨繎ぶ

谢谢 - ぶ順⑦釨繎ぶ - ぶ順⑦釨繎ぶ

  评论这张
 
阅读(1040)| 评论(0)

历史上的今天

在LOFTER的更多文章

评论

<#--最新日志,群博日志--> <#--推荐日志--> <#--引用记录--> <#--博主推荐--> <#--随机阅读--> <#--首页推荐--> <#--历史上的今天--> <#--被推荐日志--> <#--上一篇,下一篇--> <#-- 热度 --> <#-- 网易新闻广告 --> <#--右边模块结构--> <#--评论模块结构--> <#--引用模块结构--> <#--博主发起的投票-->
 
 
 
 
 
 
 
 
 
 
 
 
 
 

页脚

网易公司版权所有 ©1997-2018