登录  
 加关注
查看详情
   显示下一条  |  关闭
温馨提示!由于新浪微博认证机制调整,您的新浪微博帐号绑定已过期,请重新绑定!立即重新绑定新浪微博》  |  关闭

静心阁--漳平附小六(6)班

.

 
 
 

日志

 
 
关于我

小学数学高级教师,本科学历,市骨干教师。长期担任班主任工作,所带班级班风 、学风优良, 1次被评为省少先队先锋中队,3次被评为市先进班集体、市少先队红旗中队, 4次被评为市“优秀少先队辅导员”、市“优秀班主任”等荣誉。长期担任小学高年级数学教学工作,有丰富的高年级数学教学经验,十多篇教育教学论文在国家级、省级、市级发表或得奖, 教育教学效果好,任教学科成绩优异, 3次被市委、市府评为“ 教书育人先进个人 ”。个人教育格言:勤勤恳恳教书,踏踏实实育人。

第1讲 速算与巧算(一)  

2010-01-27 08:11:53|  分类: 四年级数学广角 |  标签: |举报 |字号 订阅

  下载LOFTER 我的照片书  |

2009年5月5日 - ぶ順⑦釨繎ぶ - ぶ順⑦釨繎ぶ第1讲 速算与巧算(一)

  计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。

  我们在三年级已经讲过一些四则运算的速算与巧算的方法,本讲和下一讲主要介绍加法的基准数法和乘法的补同与同补速算法。

1 四年级一班第一小组有10名同学,某次数学测验的成绩(分数)如下:

  86,78,77,83,91,74,92,69,84,75。

  求这10名同学的总分。

分析与解:通常的做法是将这10个数直接相加,但这些数杂乱无章,直接相加既繁且易错。观察这些数不难发现,这些数虽然大小不等,但相差不大。我们可以选择一个适当的数作“基准”,比如以“80”作基准,这10个数与80的差如下:

  6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”号表示这个数比80小。于是得到

  总和=80×10+(6-2-3+3+11-

  =800+9=809。

  实际计算时只需口算,将这些数与80的差逐一累加。为了清楚起见,将这一过程表示如下:

第1讲 速算与巧算(一) - ぶ順⑦釨繎ぶ - ぶ順⑦釨繎ぶ

  通过口算,得到差数累加为9,再加上80×10,就可口算出结果为809。

  例1所用的方法叫做加法的基准数法。这种方法适用于加数较多,而且所有的加数相差不大的情况。作为“基准”的数(如例1的80)叫做基准数,各数与基准数的差的和叫做累计差。由例1得到:

总和数=基准数×加数的个数+累计差

平均数=基准数+累计差÷加数的个数

  在使用基准数法时,应选取与各数的差较小的数作为基准数,这样才容易计算累计差。同时考虑到基准数与加数个数的乘法能够方便地计算出来,所以基准数应尽量选取整十、整百的数。

2 某农场有10块麦田,每块的产量如下(单位:千克):

  462,480,443,420,473,429,468,439,475,461。求平均每块麦田的产量。

:选基准数为450,则

  累计差=12+30-7-30+23-21+18-11+25+11

  =50,

  平均每块产量=450+50÷10=455(千克)。

  答:平均每块麦田的产量为455千克。

  求一位数的平方,在乘法口诀的九九表中已经被同学们熟知,如7×7=49(七七四十九)。对于两位数的平方,大多数同学只是背熟了10~20的平方,而21~99的平方就不大熟悉了。有没有什么窍门,能够迅速算出两位数的平方呢?这里向同学们介绍一种方法——凑整补零法。所谓凑整补零法,就是用所求数与最接近的整十数的差,通过移多补少,将所求数转化成一个整十数乘以另一数,再加上零头的平方数。下面通过例题来说明这一方法。

3 求292和822的值。

:292=29×29

  =(29+1)×(29-1)+12

  =30×28+1

  =840+1

  =841。

  822=82×82

  =(82-2)×(82+2)+22

  =80×84+4

  =6720+4

  =6724。

  由上例看出,因为29比30少1,所以给29“补”1,这叫“补少”;因为82比80多2,所以从82中“移走”2,这叫“移多”。因为是两个相同数相乘,所以对其中一个数“移多补少”后,还需要在另一个数上“找齐”。本例中,给一个29补1,就要给另一个29减1;给一个82减了2,就要给另一个82加上2。最后,还要加上“移多补少”的数的平方。

  由凑整补零法计算352,得

  35×35=40×30+52=1225。这与三年级学的个位数是5的数的平方的速算方法结果相同。

  这种方法不仅适用于求两位数的平方值,也适用于求三位数或更多位数的平方值。

4 求9932和20042的值。

:9932=993×993

  =(993+7)×(993-7)+72

  =1000×986+49

  =986000+49

  =986049。

  20042=2004×2004

  =(2004-4)×(2004+4)+42

  =2000×2008+16

  =4016000+16

  =4016016。

  下面,我们介绍一类特殊情况的乘法的速算方法。

  请看下面的算式:

  66×46,73×88,19×44。

  这几道算式具有一个共同特点,两个因数都是两位数,一个因数的十位数与个位数相同,另一因数的十位数与个位数之和为10。这类算式有非常简便的速算方法。

5 88×64=?

分析与解:由乘法分配律和结合律,得到

  88×64

  =(80+8)×(60+4)

  =(80+8)×60+(80+8)×4

  =80×60+8×60+80×4+8×4

  =80×60+80×6+80×4+8×4

  =80×(60+6+4)+8×4

  =80×(60+10)+8×4

  =8×(6+1)×100+8×4。

  于是,我们得到下面的速算式:

第1讲 速算与巧算(一) - ぶ順⑦釨繎ぶ - ぶ順⑦釨繎ぶ

  由上式看出,积的末两位数是两个因数的个位数之积,本例为8×4;积中从百位起前面的数是“个位与十位相同的因数”的十位数与“个位与十位之和为10的因数”的十位数加1的乘积,本例为8×(6+1)。

6 77×91=?

解:由例3的解法得到

第1讲 速算与巧算(一) - ぶ順⑦釨繎ぶ - ぶ順⑦釨繎ぶ

  由上式看出,当两个因数的个位数之积是一位数时,应在十位上补一个0,本例为7×1=07。

  用这种速算法只需口算就可以方便地解答出这类两位数的乘法计算。

 

 练习1

  1.求下面10个数的总和:

  165,152,168,171,148,156,169,161,157,149。

  2.农业科研小组测定麦苗的生长情况,量出12株麦苗的高度分别为(单位:厘米):

  26,25,25,23,27,28,26,24,29,27,27,25。求这批麦苗的平均高度。

  3.某车间有9个工人加工零件,他们加工零件的个数分别为:

  68,91,84,75,78,81,83,72,79。

  他们共加工了多少个零件?

  4.计算:

  13+16+10+11+17+12+15+12+16+13+12。

  5.计算下列各题:

  (1)372; (2)532; (3)912

  (4)682: (5)1082; (6)3972

  6.计算下列各题:

  (1)77×28;(2)66×55;

  (3)33×19;(4)82×44;

  (5)37×33;(6)46×99。

谢谢 - ぶ順⑦釨繎ぶ - ぶ順⑦釨繎ぶ

谢谢 - ぶ順⑦釨繎ぶ - ぶ順⑦釨繎ぶ

谢谢 - ぶ順⑦釨繎ぶ - ぶ順⑦釨繎ぶ

  评论这张
 
阅读(2782)| 评论(2)

历史上的今天

在LOFTER的更多文章

评论

<#--最新日志,群博日志--> <#--推荐日志--> <#--引用记录--> <#--博主推荐--> <#--随机阅读--> <#--首页推荐--> <#--历史上的今天--> <#--被推荐日志--> <#--上一篇,下一篇--> <#-- 热度 --> <#-- 网易新闻广告 --> <#--右边模块结构--> <#--评论模块结构--> <#--引用模块结构--> <#--博主发起的投票-->
 
 
 
 
 
 
 
 
 
 
 
 
 
 

页脚

网易公司版权所有 ©1997-2018