登录  
 加关注
查看详情
   显示下一条  |  关闭
温馨提示!由于新浪微博认证机制调整,您的新浪微博帐号绑定已过期,请重新绑定!立即重新绑定新浪微博》  |  关闭

静心阁--漳平附小六(6)班

.

 
 
 

日志

 
 
关于我

小学数学高级教师,本科学历,市骨干教师。长期担任班主任工作,所带班级班风 、学风优良, 1次被评为省少先队先锋中队,3次被评为市先进班集体、市少先队红旗中队, 4次被评为市“优秀少先队辅导员”、市“优秀班主任”等荣誉。长期担任小学高年级数学教学工作,有丰富的高年级数学教学经验,十多篇教育教学论文在国家级、省级、市级发表或得奖, 教育教学效果好,任教学科成绩优异, 3次被市委、市府评为“ 教书育人先进个人 ”。个人教育格言:勤勤恳恳教书,踏踏实实育人。

第20讲 多边形的面积  

2010-01-22 16:33:11|  分类: 五年级数学广角 |  标签: |举报 |字号 订阅

  下载LOFTER 我的照片书  |

2009年5月5日 - ぶ順⑦釨繎ぶ - ぶ順⑦釨繎ぶ第20讲 多边形的面积

  我们已经学习过三角形、正方形、长方形、平行四边形、梯形以及圆、扇形等基本图形的面积计算,图形及计算公式如下:

 小学五年级奥数专题讲座20:多边形的面积 - 小草 - ⑦埰梦圎

    小学五年级奥数专题讲座20:多边形的面积 - 小草 - ⑦埰梦圎

  正方形面积=边长×边长=a2,

  长方形面积=长×宽=ab,

  平行四边形面积=底×高=ah,

  小学五年级奥数专题讲座20:多边形的面积 - 小草 - ⑦埰梦圎

  圆面积=半径×半径×π=πr2,

  扇形面积=半径×半径×π×圆心角的度数÷360°

      小学五年级奥数专题讲座20:多边形的面积 - 小草 - ⑦埰梦圎

  在实际问题中,我们遇到的往往不是基本图形,而是由基本图形组合、拼凑成的组合图形,它们的面积不能直接用公式计算。在本讲和后面的两讲中,我们将学习如何计算它们的面积。

  例1 小两个正方形组成下图所示的组合图形。已知组合图形的周长是52厘米,DG=4厘米,求阴影部分的面积。

小学五年级奥数专题讲座20:多边形的面积 - 小草 - ⑦埰梦圎

  分析与解:组合图形的周长并不等于两个正方形的周长之和,因为CG部分重合了。用组合图形的周长减去DG,就得到大、小正方形边长之和的三倍,所以两个正方形的边长之和等于(52-4)÷3=16(厘米)。

  又由两个正方形的边长之差是4厘米,可求出

  大正方形边长=(16+4)÷2=10(厘米),

  小正方形边长=(16-4)÷2=6(厘米)。

  两个正方形的面积之和减去三角形ABD与三角形BEF的面积,就得到阴影部分的面积。

  102+62-(10×10÷2)-(10+6)×6÷2=38(厘米2)。

  例2如左下图所示,四边形ABCD与DEFG都是平行四边形,证明它们的面积相等。

小学五年级奥数专题讲座20:多边形的面积 - 小草 - ⑦埰梦圎

  分析与证明:这道题两个平行四边形的关系不太明了,似乎无从下手。我们添加一条辅助线,即连结CE(见右上图),这时通过三角形DCE,就把两个平行四边形联系起来了。在平行四边形ABCD中,三角形DCE的底是DC,高与平行四边形ABCD边DC上的高相等,所以平行四边形ABCD的面积是三角形DCE的两倍;同理,在平行四边形DEFG中,三角形DCE的底是DE,高与平行四边形DEFG边DE上的高相等,所以平行四边形DEFG的面积也是三角形DCE的两倍。

  两个平行四边形的面积都是三角形DCE的两倍,所以它们的面积相等。

  例3如左下图所示,一个腰长是20厘米的等腰三角形的面积是140厘米2,在底边上任意取一点,这个点到两腰的垂线段的长分别是a厘米和b厘米。求a+b的长。

小学五年级奥数专题讲座20:多边形的面积 - 小草 - ⑦埰梦圎

  分析与解:a,b与三角形面积的关系一下子不容易看出来。连结等腰三角形的顶点和底边上所取的点,把等腰三角形分为两个小三角形,它们的底都是20厘米,高分别为a厘米和b厘米(见右上图)。大三角形的面积与a,b的关系就显露出来了。根据三角形的面积公式,两个小三角形的面积分别为  20×a÷2和20×b÷2。

  因为这两个小三角形的面积之和等于原等腰三角形的面积,所以有

  20×a÷2+20×b÷2=140,

  10×(a+b)=140,

  a+b=14(厘米)。

  在例2、例3中,通过添加辅助线,使图形间的关系更清晰,从而使问题得解。下面再看一例。

  例4如左下图所示,三角形ABC的面积是10厘米2,将AB,BC,CA分别延长一倍到D,E,F,两两连结D,E,F,得到一个新的三角形DEF。求三角形DEF的面积。

小学五年级奥数专题讲座20:多边形的面积 - 小草 - ⑦埰梦圎

  分析与解:想办法沟通三角形ABC与三角形DEF的联系。连结FB(见右上图)。

  因为CA=AF,所以三角形ABC与三角ABF等底等高,面积相等。因为AB=BD,所以三角形ABF与三角形BDF等底等高,面积相等。由此得出,三角形ADF的面积是10+10=20(厘米2)。

  同理可知,三角形BDE与三角形CEF的面积都等于20厘米2。

  所以三角形DEF的面积等于20×3+10=70(厘米2)。

  例5一个正方形,将它的一边截去15厘米,另一边截去10厘米,剩下的长方形比原来正方形的面积减少1725厘米2,求剩下的长方形的面积。

  分析与解:根据已知条件画出下页左上图,其中甲、乙、丙为截去的部分。

小学五年级奥数专题讲座20:多边形的面积 - 小草 - ⑦埰梦圎

  由左上图知,丙是长15厘米、宽10厘米的矩形,面积为15×10=150(厘米2)。

  因为甲、丙形成的矩形的长等于原正方形的边长,乙、丙形成的矩形的长也等于原正方形的边长,所以可将两者拼成右上图的矩形。右上图矩形的宽等于10+15=25(厘米),长等于原正方形的边长,面积等于

  (甲+丙)+(乙+丙)

  = 甲+乙+丙)+丙

  = 1725+150

  = 1875(厘米2)。

  所以原正方形的的边长等于1875÷25=75(厘米)。剩下的长方形的面积等于75×75-1725=3900(厘米2)。

  例6有红、黄、绿三块同样大小的正方形纸片,放在一个正方形盒的底部,它们之间互相叠合(见右图)。已知露在外面的部分中,红色面积是20,黄色面积是14,绿色面积是10,求正方形盒子底部的面积。

小学五年级奥数专题讲座20:多边形的面积 - 小草 - ⑦埰梦圎

  分析与解:把黄色正方形纸片向左移动并靠紧盒子的左边。由于三个正方形纸片面积相等,所以原题图可以转化成下页右上图。此时露出的黄、绿两部分的面积相等,都等于

小学五年级奥数专题讲座20:多边形的面积 - 小草 - ⑦埰梦圎

  (14+10)÷2=12。

  因为绿:红=A∶黄,所以

  绿×黄=红×A,

  A=绿×黄÷红

   =12×12÷20=7.2。

  正方形盒子底部的面积是红+黄+绿+A=20+12+12+7.2=51.2。

 

练习20

  1.等腰直角三角形的面积是20厘米2,在其中做一个最大的正方形,求这个正方形的面积。

  2.如左下图所示,平行四边形ABCD的周长是75厘米,以BC为底的高是14厘米,以CD为底的高是16厘米。求平行四边形ABCD的面积。

小学五年级奥数专题讲座20:多边形的面积 - 小草 - ⑦埰梦圎 小学五年级奥数专题讲座20:多边形的面积 - 小草 - ⑦埰梦圎

  3.如右上图所示,在一个正方形水池的周围,环绕着一条宽2米的小路,小路的面积是80米2,正方形水池的面积是多少平方米?

  4.如右图所示,一个长方形被一线段分成三角形和梯形两部分,它们的面积差是28厘米2,梯形的上底长是多少厘米? 

小学五年级奥数专题讲座20:多边形的面积 - 小草 - ⑦埰梦圎

  5.如下图,在三角形ABC中,BD=DF=FC,BE=EA。若三角形EDF的面积是1,则三角形ABC的面积是多少?

小学五年级奥数专题讲座20:多边形的面积 - 小草 - ⑦埰梦圎

  6.一个长方形的周长是28厘米,如果它的长、宽都分别增加3厘米,那么得到的新长方形比原长方形的面积增加了多少平方厘米?

  7.如下图所示,四边形ABCD的面积是1,将BA,CB,DC,AD分别延长一倍到E,F,G,H,连结E,F,G,H。问:得到的新四边形EFGH的面积是多少?

小学五年级奥数专题讲座20:多边形的面积 - 小草 - ⑦埰梦圎

  评论这张
 
阅读(372)| 评论(0)

历史上的今天

在LOFTER的更多文章

评论

<#--最新日志,群博日志--> <#--推荐日志--> <#--引用记录--> <#--博主推荐--> <#--随机阅读--> <#--首页推荐--> <#--历史上的今天--> <#--被推荐日志--> <#--上一篇,下一篇--> <#-- 热度 --> <#-- 网易新闻广告 --> <#--右边模块结构--> <#--评论模块结构--> <#--引用模块结构--> <#--博主发起的投票-->
 
 
 
 
 
 
 
 
 
 
 
 
 
 

页脚

网易公司版权所有 ©1997-2018